Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases.
نویسندگان
چکیده
Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are approximately 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts (approximately 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected. Together, these results demonstrate that extrahepatic esterolytic metabolism of specific pyrethroids may be significant. Moreover, hepatic cytosolic and microsomal hydrolytic metabolism should each be considered during the development of pharmacokinetic models that predict the disposition of pyrethroids and other esterified compounds.
منابع مشابه
Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases.
Pyrethroid chemicals are attractive alternatives to the organophosphates (OPs) because of their selective toxicity against pests rather than mammals. The carboxylesterases (CEs) are hepatic enzymes that metabolize ester-containing xenobiotics such as pyrethroids. The primary aim of this study was to gain insight into the catalytic properties of the CE enzymes in humans that metabolize pyrethroi...
متن کاملProtective role of ferulic acid against the damaging effect induced by electromagnetic waves on rat liver and intestine tissues
Background: the increasing use of mobile phones in daily life causes many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to 1800 MHz electromagnetic waves (EMW) on the liver and intestine of male albino rats and the protective role of ferulic acid (FA) against these harmful effects. Materials and Methods: twenty-four male albino ...
متن کاملStereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases.
Mammalian hepatic carboxylesterases (CEs) play important roles in the detoxification of ester-containing pyrethroids, which are widely used for the control of agricultural pests and disease vectors such as mosquitoes. Pyrethroids and pyrethroid-like fluorescent substrates exhibit a consistent pattern of stereoselective hydrolysis by a recombinant murine hepatic CE. We sought to understand wheth...
متن کاملCharacterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2.
Carboxylesterases hydrolyze a large array of endogenous and exogenous ester-containing compounds, including pyrethroid insecticides. Herein, we report the specific activities and kinetic parameters of human carboxylesterase (hCE)-1 and hCE-2 using authentic pyrethroids and pyrethroid-like, fluorescent surrogates. Both hCE-1 and hCE-2 hydrolyzed type I and II pyrethroids with strong stereoselect...
متن کاملDevelopment of optically pure pyrethroid-like fluorescent substrates for carboxylesterases.
Pyrethroids are now the world's most extensively used insecticides. One of the common metabolic routes of pyrethroid insecticides in living systems is hydrolysis by carboxylesterases, and this hydrolysis may be stereospecific since most pyrethroid insecticides have chiral centers. In previous studies, pyrethroid-like fluorescent substrates have been shown to be hydrolyzed in a fashion similar t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicology and applied pharmacology
دوره 221 1 شماره
صفحات -
تاریخ انتشار 2007